# **EPEAT Disclosure Report 2023**

October 2024



## **TABLE OF CONTENTS**

| 1. | Substances of Very High Concern (Criterion 5.2.1)                            | 3    |
|----|------------------------------------------------------------------------------|------|
| 2. | Life Cycle Assessment (Criterion 7.1.2 and 7.2.1)                            | 3    |
| 3. | Material Recovery Targets (Criterion 9.1.3)                                  | 5    |
| 4. | Corporate Reporting (Criterion 11.2.1)                                       | 6    |
| 5. | Corporate Reporting (Criterion 11.2.2)                                       | . 11 |
| 6. | Reporting on screening of Tier 1 suppliers (11.2.3)                          | . 13 |
| 7. | Public Disclosure of Use of Conflict Minerals in Products (Criterion 11.4.1) | . 13 |

The following EPEAT disclosure report was prepared for conformance to the ANSI/NSF 457 Sustainability Leadership Standard.



#### 1. Substances of Very High Concern (Criterion 5.2.1)

First Solar Series 6, Series 6 *Plus* and Series 7 PV modules consist of four articles: glass module, junction box, cable, and frame/rail. These articles do not contain substances on the Candidate List of Substances of Very High Concern (SVHC) as defined by EU REACH regulation (revision date: Sep. 25, 2023) above 0.1% by weight per article.

#### 2. Life Cycle Assessment (Criterion 7.1.2 and 7.2.1)

First Solar conducted a life cycle assessment (LCA) of its Series 6 PV modules, which was published in the IEEE Journal of Photovoltaics: <a href="https://ieeexplore.ieee.org/document/8305539">https://ieeexplore.ieee.org/document/8305539</a> (doi: <a href="https://ieeexplore.ieee.org/document/8305539">10.1109/JPHOTOV.2018.2802786</a>), in accordance with the requirements of the European Union Product Environmental Footprint Guide. A copy of the conference paper is available on First Solar's website and includes an overview of identified life cycle hotspots: <a href="http://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Studies/PVSC-44">http://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Studies/PVSC-44</a> Addressing-Hotspots-in-the-Product-Environmental-Footprint-of-CdTe-PV.ashx?dl=1.

The LCA quantifies the following mid-point indicators according to ILCD 2011 for First Solar Series 4 modules and First Solar Series 6 modules as follows:

| 3kWp installation, roof mounted (total all | life stages recycli         | na henefits             | included)               |
|--------------------------------------------|-----------------------------|-------------------------|-------------------------|
| extra materia, foot mounted (total all     | Stages, recycli             | ng perients             | ciuucu)                 |
| Impact category                            | Unit per kWh DC electricity | First Solar<br>Series 4 | First Solar<br>Series 6 |
| Climate change                             | kg CO2 eq                   | 1.94E-02                | 1.66E-02                |
| Ozone depletion                            | kg CFC-11 eq                | 8.78E-10                | 9.47E-10                |
| Human toxicity, non-cancer effects         | CTUh                        | 4.95E-09                | 5.11E-09                |
| Human toxicity, cancer effects             | CTUh                        | 5.97E-10                | 5.16E-10                |
| Particulate matter                         | kg PM2.5 eq                 | 9.95E-06                | 7.72E-06                |
| lonizing radiation HH                      | kBq U235 eq                 | 9.06E-04                | 7.83E-04                |
| Photochemical ozone formation              | kg NM∀OC eq                 | 7.43E-05                | 5.62E-05                |
| Acidification                              | molc H+ eq                  | 1.46E-04                | 1.10E-04                |
| Terrestrial eutrophication                 | molc N eq                   | 2.76E-04                | 2.07E-04                |
| Freshwater eutrophication                  | kg P eq                     | 3.60E-06                | 3.51E-06                |
| Marine eutrophication                      | kg N eq                     | 2.54E-05                | 1.91E-05                |
| Freshwater ecotoxicity                     | CTUe                        | 7.63E-02                | 7.50E-02                |
| Land use                                   | kg C deficit                | 1.19E-02                | 8.61E-03                |
| Water resource depletion                   | m3 water eq                 | 7.83E-05                | 6.07E-05                |
| Mineral, fossil & ren resource depletion   | kg Sb eq                    | 3.09E-06                | 2.58E-06                |
| Cumulative energy demand non renewable     | MJ                          | 2.90E-01                | 2.47E-01                |
| Cumulative energy demand renewable         | MJ                          | 3.63E+00                | 3.62E+00                |
| Nuclear waste                              | m3 HAA eq                   | 2.12E-11                | 1.84E-11                |

First Solar conducted a life cycle assessment (LCA) of its Series 7 PV modules, which was published in EPD Norge: <a href="https://www.epd-norge.no/epder/bygg/solcellepaneler-og-komponenter/first-solar-series-7-photovoltaic-module">https://www.epd-norge.no/epder/bygg/solcellepaneler-og-komponenter/first-solar-series-7-photovoltaic-module</a>, in accordance with ISO 14025 and EN15804 +A2. The Series 7 EPD includes an overview of identified life cycle hotspots (p. 13).



The LCA quantifies the following mid-point indicators according to EN15804 +A2 for First Solar Series 7 modules as follows:

| Core environ             | nmental ir                | npact ind          | icators      |              |              |              |              |                 |                 |               |
|--------------------------|---------------------------|--------------------|--------------|--------------|--------------|--------------|--------------|-----------------|-----------------|---------------|
| Indicator                | Unit                      | A1-A3 <sup>3</sup> | A43          | A5           | B2           | B4           | C1           | C2 <sup>4</sup> | C3 <sup>4</sup> | D             |
| GWP-total                | kg CO2<br>eq.             | 2.35E-01           | 2.17E-<br>02 | 1.69E-<br>03 | 5.61E-<br>05 | 2.40E-<br>03 | 1.26E-<br>04 | 4.36E-<br>02    | 1.51E-<br>02    | -6.42E-<br>02 |
| GWP-fossil               | kg CO2<br>eq.             | 2.33E-01           | 2.17E-<br>02 | 1.29E-<br>03 | 5.26E-<br>05 | 2.38E-<br>03 | 1.17E-<br>04 | 4.34E-<br>02    | 1.36E-<br>02    | -6.38E-<br>02 |
| GWP-<br>biogenic         | kg CO2<br>eq.             | 1.06E-03           | 1.86E-<br>05 | 4.01E-<br>04 | 3.43E-<br>06 | 1.14E-<br>05 | 8.57E-<br>06 | 1.18E-<br>04    | 1.46E-<br>03    | -2.99E-<br>04 |
| GWP-<br>LULUC            | kg CO2<br>eq.             | 2.35E-04           | 1.32E-<br>05 | 1.38E-<br>06 | 6.97E-<br>08 | 2.20E-<br>06 | 2.88E-<br>07 | 2.19E-<br>05    | 1.91E-<br>05    | -2.61E-<br>05 |
| ODP                      | kg<br>CFC11<br>eq.        | 3.13E-09           | 3.30E-<br>10 | 2.06E-<br>11 | 1.16E-<br>12 | 3.77E-<br>11 | 2.20E-<br>12 | 9.21E-<br>10    | 5.83E-<br>10    | -1.04E-<br>09 |
| AP                       | mol H <sup>+</sup><br>eq. | 1.59E-03           | 2.62E-<br>04 | 8.34E-<br>06 | 2.51E-<br>07 | 1.57E-<br>05 | 6.61E-<br>07 | 9.20E-<br>05    | 4.07E-<br>05    | -2.18E-<br>04 |
| EP-<br>freshwater        | kg P eq.                  | 1.42E-05           | 1.60E-<br>07 | 7.33E-<br>08 | 2.88E-<br>09 | 1.26E-<br>07 | 1.14E-<br>08 | 3.57E-<br>07    | 2.17E-<br>06    | -1.61E-<br>06 |
| EP-marine                | kg N eq.                  | 3.01E-04           | 6.50E-<br>05 | 1.67E-<br>06 | 4.57E-<br>08 | 3.21E-<br>06 | 8.30E-<br>08 | 2.23E-<br>05    | 7.79E-<br>06    | -8.00E-<br>05 |
| EP-<br>terrestial        | mol N<br>eq.              | 3.56E-03           | 7.15E-<br>04 | 1.92E-<br>05 | 5.17E-<br>07 | 3.70E-<br>05 | 9.68E-<br>07 | 2.32E-<br>04    | 7.73E-<br>05    | -4.68E-<br>04 |
| POCP                     | kg<br>NMVOC<br>eq.        | 1.02E-03           | 2.15E-<br>04 | 5.84E-<br>06 | 1.87E-<br>07 | 1.12E-<br>05 | 3.11E-<br>07 | 1.42E-<br>04    | 2.60E-<br>05    | -1.79E-<br>04 |
| ADP-<br>M&M <sup>2</sup> | kg Sb<br>eq.              | 2.94E-06           | 5.16E-<br>08 | 1.30E-<br>08 | 3.30E-<br>10 | 2.38E-<br>08 | 1.40E-<br>09 | 1.48E-<br>07    | 4.86E-<br>08    | -5.47E-<br>07 |
| ADP-fossil <sup>2</sup>  | MJ                        | 2.83E+00           | 2.85E-<br>01 | 1.73E-<br>02 | 8.07E-<br>04 | 3.00E-<br>02 | 2.62E-<br>03 | 6.00E-<br>01    | 2.04E-<br>01    | -5.70E-<br>01 |
| WDP <sup>2</sup>         | m³                        | 4.63E-02           | 1.03E-<br>03 | 2.41E-<br>04 | 4.55E-<br>03 | 4.31E-<br>04 | 2.98E-<br>05 | 2.42E-<br>03    | 7.72E-<br>03    | -1.49E-<br>02 |

**GWP-total:** Global Warming Potential; **GWP-fossil:** Global Warming Potential fossil fuels; **GWP-biogenic:** Global Warming Potential biogenic; **GWP-LULUC:** Global Warming Potential land use and land use change; **ODP:** Depletion potential of the stratospheric ozone layer; **AP:** Acidification potential, Accumulated Exceedance; **EP-freshwater:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional requirements" for indicator given as PO4 eq. **EP-marine:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-terrestial:** Eutrophication potential, Accumulated Exceedance; **POCP:** Formation potential of tropospheric ozone; **ADP-M&M:** Abiotic depletion potential for non-fossil resources (minerals and metals); **ADP-fossil:** Abiotic depletion potential for fossil resources; **WDP:** Water deprivation potential, deprivation weighted water counsumption



| Additional          | environmental        | impact ii              | ndicato      | ors          |              |              |              |                 |                 |               |
|---------------------|----------------------|------------------------|--------------|--------------|--------------|--------------|--------------|-----------------|-----------------|---------------|
| Indicator           | Unit                 | A1-<br>A3 <sup>3</sup> | A43          | A5           | B2           | B4           | C1           | C2 <sup>4</sup> | C3 <sup>4</sup> | D             |
| PM                  | Disease<br>incidence | 1.34E-08               | 1.02E-<br>09 | 6.64E-<br>11 | 2.76E-<br>12 | 1.31E-<br>10 | 2.00E-<br>12 | 2.36E-<br>09    | 2.26E-<br>10    | -2.43E-<br>09 |
| IRP <sup>1</sup>    | kBq U235 eq.         | 6.70E-03               | 8.78E-<br>05 | 5.29E-<br>05 | 5.09E-<br>06 | 5.89E-<br>05 | 2.37E-<br>05 | 3.29E-<br>04    | 7.18E-<br>04    | -5.77E-<br>04 |
| ETP-fw <sup>2</sup> | CTUe                 | 1.96E+00               | 1.62E-<br>01 | 9.55E-<br>03 | 2.05E-<br>04 | 1.91E-<br>02 | 2.62E-<br>04 | 3.20E-<br>01    | 7.23E-<br>02    | -4.42E-<br>01 |
| HTP-c <sup>2</sup>  | CTUh                 | 2.82E-10               | 9.48E-<br>12 | 1.23E-<br>12 | 1.92E-<br>13 | 2.39E-<br>12 | 5.42E-<br>14 | 1.97E-<br>11    | 4.92E-<br>12    | -1.00E-<br>10 |
| HTP-nc              | CTUh                 | 5.18E-09               | 2.26E-<br>10 | 2.64E-<br>11 | 2.54E-<br>12 | 4.86E-<br>11 | 2.32E-<br>12 | 5.40E-<br>10    | 4.92E-<br>10    | -9.66E-<br>10 |
| SQP <sup>2</sup>    | Dimensionless        | 1.27E+00               | 1.23E-<br>01 | 7.08E-<br>03 | 2.53E-<br>04 | 1.35E-<br>02 | 5.11E-<br>04 | 3.40E-<br>01    | 3.19E-<br>02    | -1.94E-<br>01 |

**PM:** Particulate matter emissions; **IRP:** Ionising radiation, human health; **ETP-fw:** Ecotoxicity (freshwater); **ETP-c:** Human toxicity, cancer effects; **HTP-nc:** Human toxicity, non-cancer effects; **SQP:** Land use related impacts / soil quality

### 3. Material Recovery Targets (Criterion 9.1.3)

First Solar's high-value PV recycling process recovers more than 90% of a First Solar module for reuse in new First Solar modules, glass products and rubber products. Approximately 90% of the glass and more than 90% of the semiconductor material and more than 90% of other metals are recovered at end-of-life.

| First Solar PV Module Recycling Material Recovery Achievements |             |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------|--|--|--|--|--|--|
| Glass                                                          | = 90 mass-% |  |  |  |  |  |  |
| Metals (not including semiconductor materials)                 | ≥ 90 mass-% |  |  |  |  |  |  |
| Semiconductor Materials                                        | ≥ 90 mass-% |  |  |  |  |  |  |



## 4. Corporate Reporting (Criterion 11.2.1)

| Key<br>Performance                                                                   | Reference        | Source of Key F<br>Indicator                                                   | Performance                                                                                                                                                                                                                                                                                                                                                                   | First Solar                           |                                                             |                                       |  |
|--------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|---------------------------------------|--|
| Indicators                                                                           | GRI<br>Standards | SASB solar<br>energy<br>sustainability<br>accounting<br>standard <sup>30</sup> | SEIA<br>Commitme<br>nt <sup>28</sup>                                                                                                                                                                                                                                                                                                                                          | 2022                                  | 2023                                                        | Boundary                              |  |
| PV modules<br>produced in<br>MW DC in<br>reporting<br>period                         | 2-6              | RR-ST-000.A                                                                    | Included                                                                                                                                                                                                                                                                                                                                                                      | 9,068                                 | 12,100                                                      | Manufacturing<br>(Global)             |  |
| Recycled input<br>materials used<br>(%)                                              | 301-2            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                               | 7%                                    | 0% - 37%                                                    | Semiconductor<br>material<br>(Global) |  |
| Standards, meth calculation tools                                                    |                  | sumptions, and/                                                                | or                                                                                                                                                                                                                                                                                                                                                                            | 2023 is limited                       | cled input materia<br>to the semicond<br>n actual data fron | uctor material                        |  |
| Energy<br>consumption<br>within the<br>organization                                  | 302-1            | RR-ST-<br>130a.1                                                               | Included                                                                                                                                                                                                                                                                                                                                                                      | 1,072,663<br>MWh<br>(3,861,587<br>GJ) | 1,449,109<br>MWh<br>(5,216,792<br>GJ)                       | Global (equity<br>share)              |  |
| Total fuel consumption from non-renewable sources                                    | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 32,827 MWh<br>(118,177 GJ)            | 56,869 MWh<br>(204,728 GJ)                                  | Global (equity<br>share)              |  |
| Natural gas                                                                          | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 29,749 MWh<br>(107,096 GJ)            | 56,078 MWh<br>(201,880 GJ)                                  | Global (equity share)                 |  |
| Diesel/Gas oil                                                                       | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 482 MWh<br>(1,735 GJ)                 | 636 MWh<br>(2,289 GJ)                                       | Global (equity share)                 |  |
| Motor Gasoline                                                                       | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 2,596 MWh<br>(9,346 GJ)               | 155 MWh<br>(558 GJ)                                         | Global (equity share)                 |  |
| Consumption of<br>self-generated<br>non-fuel<br>renewable<br>energy- onsite<br>solar | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 7,172 MWh<br>(25,819 GJ)              | 7,532 MWh<br>(27,115 GJ)                                    | Global (equity<br>share)              |  |
| Consumption of purchased electricity                                                 | 302-1            | RR-ST-<br>130a.1                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 1,032,664<br>MWh<br>(3,717,590<br>GJ) | 1,384,708<br>MWh<br>(4,984,948<br>GJ)                       | Global (equity<br>share)              |  |
| Standards, meth calculation tools                                                    |                  | sumptions, and/                                                                | Energy data is based on electricity bills. Solar generation is estimated based on size of the PV installations at our production sites in Ohio, Malaysia, Vietnam, and at our recycling facility in Frankfurt Oder, Germany. Conversion factors from WRI GHG protocol. Heating, steam, and cooling from non-renewable and renewable sources are not applicable, and fuel from |                                       |                                                             |                                       |  |



|                                                                                                  |       |                  |          |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               | icable. Electricity,                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------|-------|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy<br>consumption in<br>manufacturing                                                        | 302-1 | RR-ST-<br>130a.1 |          | heating, cooling<br>1,016,560<br>MWh<br>(3,659,616<br>GJ)                                                                                                                                                                                                                                                                                                                       | g, and steam was<br>1,376,981<br>MWh<br>(4,957,131<br>GJ)                                                                                                                                                                     | Manufacturing<br>(Global)                                                                                                                                                                                                                    |
| Grid electricity consumed (%)                                                                    |       | RR-ST-<br>130a.1 |          | 96%                                                                                                                                                                                                                                                                                                                                                                             | 96%                                                                                                                                                                                                                           | Global (equity share)                                                                                                                                                                                                                        |
| Renewable<br>energy<br>consumed-<br>onsite solar (%)                                             |       | RR-ST-<br>130a.1 |          | 1%                                                                                                                                                                                                                                                                                                                                                                              | 1%                                                                                                                                                                                                                            | Global (equity<br>share)                                                                                                                                                                                                                     |
| Manufacturing<br>Energy Intensity<br>(kWh per Watt<br>Produced)                                  | 302-3 |                  |          | 0.11                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                                                          | Manufacturing<br>(Global)                                                                                                                                                                                                                    |
| Standards, metho                                                                                 |       | sumptions, and/  | or       |                                                                                                                                                                                                                                                                                                                                                                                 | otal energy (elec                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |
| calculation tools                                                                                | usea  |                  |          | _                                                                                                                                                                                                                                                                                                                                                                               | ced basis. The ra                                                                                                                                                                                                             | g operations on a<br>tio uses energy                                                                                                                                                                                                         |
|                                                                                                  |       |                  |          | consumption w                                                                                                                                                                                                                                                                                                                                                                   | ithin the organiza                                                                                                                                                                                                            | ation.                                                                                                                                                                                                                                       |
| Total water withdrawal from all sources (megaliters or thousand m³)                              | 303-3 | RR-ST-<br>140a.1 | Included | 3,149                                                                                                                                                                                                                                                                                                                                                                           | 3,859                                                                                                                                                                                                                         | Manufacturing,<br>Recycling and<br>R&D (Global)                                                                                                                                                                                              |
| Water<br>withdrawn in<br>water stressed<br>areas (%)                                             |       | RR-ST-<br>140a.1 |          | 0.02%                                                                                                                                                                                                                                                                                                                                                                           | 8%                                                                                                                                                                                                                            | Manufacturing,<br>Recycling and<br>R&D (Global)                                                                                                                                                                                              |
| Total water<br>consumption<br>from all<br>sources<br>(megaliters or<br>thousand m <sup>3</sup> ) | 303-5 | RR-ST-<br>140a.1 | Included | 1,776                                                                                                                                                                                                                                                                                                                                                                           | 2,158                                                                                                                                                                                                                         | Manufacturing,<br>Recycling and<br>R&D (Global)                                                                                                                                                                                              |
| Water<br>consumed in<br>water stressed<br>areas (%)                                              |       | RR-ST-<br>140a.1 |          | 0.04%                                                                                                                                                                                                                                                                                                                                                                           | 6.6%                                                                                                                                                                                                                          | Manufacturing,<br>Recycling and<br>R&D (Global)                                                                                                                                                                                              |
| Standards, method calculation tools                                                              |       | sumptions, and/  | or       | suppliers (third on water bills. I withdrawals ca compared to 0. manufacturing Mesa, Arizona as water stress PV manufactur relies entirely owater from the its process wat discharge. We defined stresses that is ea 80%. For informatic water from the its process wat discharge. We defined stresses that is ea 80%. For informatic water from the its process wat discharge. | facility in India. In test site was the sed. In India, we coing water withdrawn tertiary treated city's sewage treer with zero wast used the WWF Ried areas as having qual to/greater the nation on our was se see our sustai | r). Data is based our water cressed areas, cause of our new on 2022, our only one classed operate a net-zero ewal facility which a reverse osmosis atment plant for ewater sk Filter Tool and g baseline water nan 'High': 40-ter management |



| Direct GHG<br>emissions-<br>Scope 1 (MT<br>CO <sub>2</sub> eq)                                                             | 305-1                   |                  | Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,690                                       | 11,638                                  | Global (equity<br>share)                 |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------|--|
| Standards, methocalculation tools                                                                                          | used                    | sumptions, and/  | Data includes all greenhouse gases. Calculations are based on published criteria, such as emission factors and Global Warming Potential (GWP) rates from WRI GHG protocol and IPCC Fifth Assessment Report (AR5 – 100 year), respectively. Biogenic emissions are not applicable. For comparison purposes, the base year scope 1 emissions in 2008 were 1,020 MT CO2eq. The 2008 base year is the earliest year when First Solar international facilities started operating. Consolidation approach is based on equity share.                                      |                                             |                                         |                                          |  |
| Energy indirect<br>GHG emissions-<br>Scope 2 (MT<br>CO2eq)                                                                 | 305-2                   |                  | Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 563,652                                     | 776,502                                 | Global (equity<br>share)                 |  |
| Standards, methocalculation tools                                                                                          | •                       | sumptions, and/  | Data includes all greenhouse gases for market-based scope 2 emissions. Calculations are based on published criteria, such as emission factors and Global Warming Potential (GWP) rates from WRI GHG protocol and IPCC Fifth Assessment Report (AR5 – 100 year), respectively. For comparison purposes, the base year scope 2 emissions in 2008 were 123,046 MT CO2eq. The 2008 base year is the earliest year when First Solar international facilities started operating. Biogenic emissions are not applicable. Consolidation approach is based on equity share. |                                             |                                         |                                          |  |
| Waste by type<br>and disposal<br>method                                                                                    | 306-3<br>306-4<br>306-5 | RR-ST-<br>150a.1 | Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sustainability Report (pg.33,73 and 74)     | Sustainability<br>Report (pg.<br>81-82) | Manufacturing<br>(Global)                |  |
| Standards, methocalculation tools                                                                                          |                         | sumptions, and/  | Data includes total weight of waste disposed (landfill, incineration, or other disposal) and total weight of waste diverted from disposal (recycled, reused, or recovered by other operations) by type (hazardous or non-hazardous) in accordance with 2020 GRI standards. Waste disposal method is determined by information provided by the waste disposal contractor. 100% of waste directed to disposal and diverted from disposal occurs onsite.                                                                                                              |                                             |                                         |                                          |  |
| Type of injury<br>and rates of<br>injury, lost<br>days, and<br>absenteeism,<br>and number of<br>work-related<br>fatalities | 403-9                   |                  | Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sustainability<br>Report (pg.<br>55 and 74) | Sustainability<br>Report (pg.<br>83)    | Global<br>(manufacturing<br>and offices) |  |



| work-related injuries  Rate of High- Consequence Work- Related Injuries (excluding fatalities)  Number of High- Consequence Work- Related Injuries (excluding fatalities)  Number of High- Consequence Work- Related Injuries | First Solar<br>Work-Related<br>Recordable<br>Injury Rate (per<br>200,000 | 403-9 |          | 0.46 | 0.58 | Global<br>(manufacturing<br>and offices) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|----------|------|------|------------------------------------------|
| Consequence Work- Related Injuries (excluding fatalities)  Number of 403-9 High- Consequence Work- Related Injuries  (manufactur and offices  O O Global (manufactur and offices)                                             | Number of recordable work-related                                        | 403-9 | Included | 27   | 42   | Global<br>(manufacturing<br>and offices) |
| High- Consequence Work- Related Injuries  (manufactur and offices                                                                                                                                                             | Consequence<br>Work-<br>Related Injuries<br>(excluding                   | 403-9 |          | 0    | 0    | Global<br>(manufacturing<br>and offices) |
| (excluding fatalities)                                                                                                                                                                                                        | High-<br>Consequence<br>Work-<br>Related Injuries<br>(excluding          | 403-9 |          | 0    | 0    | Global<br>(manufacturing<br>and offices) |
|                                                                                                                                                                                                                               | Rate of Work-<br>Related                                                 | 403-9 |          | 0    | 0    | Global<br>(manufacturing<br>and offices) |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                         | diseases                                                                 |       |          |      |      | (manufacturing and offices)              |

Standards, methodologies, assumptions, and/or calculation tools used

Safety data includes all full-time, part-time, and temporary employees as well as interns at all global manufacturing, R&D and office locations. There are no workers who are not employees but whose work and/or workplace is controlled by the organization. Rates of injury are calculated per 200,000 hours. First Solar's manufacturing data covers all processes (from the beginning of the manufacturing process to the finished module) and includes all of the company's manufacturing facilities in the U.S., Malaysia, Vietnam, and India. First Solar's advanced thin film modules are manufactured in a highthroughput, automated environment that integrates all manufacturing steps into a continuous flow operation under one roof. First Solar's safety management system hazard identification and risk assessment process identified the following hazards that have the potential for serious injury or fatality: confined space entry, electrical exposure and arc flash, line of fire, lock out/tag out, machine guards, vehicle collision, working with a suspended load, and working at heights. First Solar has developed EHS Design Requirements for new equipment that includes equipment and machine safety



|  | requirements. Training and procedures are in place to identify and control potential hazards. |
|--|-----------------------------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------|



## 5. Corporate Reporting (Criterion 11.2.2)

| Key<br>Performance                               |                                    | ence Source o<br>ormance Indic                                                 | First Solar                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                                 |  |  |  |
|--------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| Indicators                                       | GRI<br>Standard<br>s <sup>14</sup> | SASB solar<br>energy<br>sustainability<br>accounting<br>standard <sup>30</sup> | SEIA<br>Commit<br>ment <sup>28</sup>                                                                                                                                                                                                                                                                                                                                                                                  | 2022 2023 Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       |                                                 |  |  |  |
| Reduction of energy consumption                  | 302-4                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,405 MWh<br>(12,258 GJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12,245 MWh<br>(44,082 GJ)                                                                                                                                                                                                                             | Global<br>Manufacturing<br>(electricity)        |  |  |  |
| Standards, me calculation tools                  | ethodologies<br>s used             | , assumptions                                                                  | s, and/or                                                                                                                                                                                                                                                                                                                                                                                                             | electricity cons<br>year as a base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Engineering measurements of lighting and HVAC electricity conservation projects using previous year as a baseline, in order to show annual progress. Scope 2 WRI/WBCSD GHG Protocol.                                                                  |                                                 |  |  |  |
| Water<br>withdrawn in<br>water stressed<br>areas | 303-3                              | RR-ST-<br>140a.1<br>(or WBSCD<br>Global Water<br>Tool <sup>40</sup> )          | and/or                                                                                                                                                                                                                                                                                                                                                                                                                | 0.692<br>megaliters<br>(0.02%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 325<br>megaliters<br>(8%)                                                                                                                                                                                                                             | Manufacturing,<br>Recycling and<br>R&D (Global) |  |  |  |
| Standards, me calculation tools                  | ethodologies<br>s used             | , assumptions                                                                  | water stressed because of ou In 2022, our Mone classed as operate a netwithdrawal factreated revers sewage treatn zero wastewat Risk Filter Too having baselin to/greater that our water man sustainability 100% of our wastewater), i                                                                                                                                                                                | of our water withdrawd areas, compared to reas, compared to respect to the manufacturing and the second areas of the second ar | go 0.02% in 2022 gg facility in India. ite was the only India, we ring water tirely on tertiary om the city's ocess water with sed the WWF sed areas as is equal or information on , please see our er response. om local freshwater or d-party water |                                                 |  |  |  |
| Water recycled<br>and reused<br>(megaliters)     |                                    |                                                                                | , and/or                                                                                                                                                                                                                                                                                                                                                                                                              | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 318                                                                                                                                                                                                                                                   | Manufacturing,<br>Recycling and<br>R&D (Global) |  |  |  |
| Standards, me calculation tools                  | ethodologies<br>s used             | , assumptions                                                                  | We measure the amount of water recycled at our manufacturing and recycling facilities in Malaysia, Ohio, Vietnam, India, and Germany, which represented 99.9% of our water withdrawals in 2022 and 2023. We recycled approximately 318 megaliters in 2023 (or approximately 8% of our total water withdrawals) and 169 megaliters in 2022 (or approximately 5% of our total water withdrawals) across our operations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                                 |  |  |  |
| GHG<br>emissions<br>intensity<br>(metric tons of | 305-4                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                                                    | Global (equity<br>share)                        |  |  |  |



| CO2-eq / MW produced)                                       |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standards, me calculation tools                             | ethodologies<br>s used | , assumptions                        | In 2022 and 202, our GHG emissions intensity includes direct (scope 1) and indirect (scope 2) emissions of all manufacturing and recycling plants, R&D and testing facilities, company-owned operational solar projects, and company-owned vehicle fleet on a carbon intensity basis measured per megawatt (MW) of PV modules produced. All GHGs are included in the calculations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reduction of<br>GHG<br>emissions<br>(metric tons<br>CO2-eq) | 305-5                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                    | Scope 1: 0<br>Scope 2:<br>2,254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scope 1: 0<br>Scope 2: 7,779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Global<br>Manufacturing<br>(electricity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standards, me calculation tools                             |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                    | previous year progress. We in 2023 to reduce consumption of installing a headryers, replacifing increasing the installing motified in a resulted in a result | WRI/WBCSD GHG as baseline, in order mplemented several see emissions, included of compressed dry a latexchanger for the regular text and the consensors for sanifacturing for the reduction of 7779 m and 2 emissions in the reduction activities on our gross global expection and chiller of manufacturing facilities are sulted in saving 22-eq in 2022 from sumption in 2022. The previous year (560,210 metric tons uction activities ame in our gross globals are included in the previous of the previous year (560,210 metric tons uction activities ame in our gross globals are included in the | er to show annual all projects in ling reducing the air (CDA), and the canteen, a facility, and tary facilities, ich collectively netric tons CO2e. The previous year etric tons CO2equations in a re-lighting and manufacturing ghting, HVAC, optimization lity in Vietnam. In Ity in Vietnam. It in Vietna |
| Product<br>Recycling<br>Program in<br>Place                 | 301-2<br>301-3         | RR-ST-<br>410b.2<br>RR-ST-<br>410b.4 | Included                                                                                                                                                                                                                                                                                                                                                                           | <u>Yes</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>Yes</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

First Solar's manufacturing data covers all processes (from the beginning of the manufacturing process to finished module) and includes all of the company's manufacturing facilities in the U.S., Malaysia, Vietnam, and India. First Solar's advanced thin film modules are manufactured in a high-throughput, automated environment that integrates all manufacturing steps into a continuous flow operation under one roof.



### 6. Reporting on screening of Tier 1 suppliers (11.2.3)

In 2023, First Solar assessed 100% of our tier 1 suppliers that provide materials and components for manufacturing and 100% of our new suppliers using social and environmental criteria. 100% of our major suppliers completed an RBA Self-Assessment Questionnaire (SAQ). We leverage third-party tools and indices on global slavery, forced labor and other environmental, social, governance (ESG) aspects to identify high-risk suppliers based on industry, geography and spend. We publicly report on the environmental and social performance of the suppliers we audit in our sustainability report on an annual basis. Please see pg. 49 of our 2024 Sustainability Report.

# 7. Public Disclosure of Use of Conflict Minerals in Products (Criterion 11.4.1)

First Solar is committed to responsible sourcing and operating a supply chain free of conflict minerals. First Solar's <u>Specialized Disclosure and Conflict Minerals reports</u> are available on our public website (see "Specialized Disclosure" tab in SEC Filings).